Fast parametric elastic image registration

We present an algorithm for fast elastic multidimensional intensity-based image registration with a parametric model of the deformation. It is fully automatic in its default mode of operation. In the case of hard real-world problems, it is capable of accepting expert hints in the form of soft landma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 11 vom: 15., Seite 1427-42
1. Verfasser: Kybic, Jan (VerfasserIn)
Weitere Verfasser: Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present an algorithm for fast elastic multidimensional intensity-based image registration with a parametric model of the deformation. It is fully automatic in its default mode of operation. In the case of hard real-world problems, it is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. Particular attention has been paid to the factors influencing the speed of this algorithm. The B-spline deformation model is shown to be computationally more efficient than other alternatives. The algorithm has been successfully used for several two-dimensional (2-D) and three-dimensional (3-D) registration tasks in the medical domain, involving MRI, SPECT, CT, and ultrasound image modalities. We also present experiments in a controlled environment, permitting an exact evaluation of the registration accuracy. Test deformations are generated automatically using a random hierarchical fractional wavelet-based generator
Beschreibung:Date Completed 14.12.2009
Date Revised 04.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2003.813139