Anti-geometric diffusion for adaptive thresholding and fast segmentation

We utilize an anisotropic diffusion model, which we call the anti-geometric heat flow, for adaptive thresholding of bimodal images and for segmentation of more general greyscale images. In a departure from most anisotropic diffusion techniques, we select the local diffusion direction that smears edg...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 11 vom: 15., Seite 1310-23
Auteur principal: Manay, Siddharth (Auteur)
Autres auteurs: Yezzi, Anthony
Format: Article en ligne
Langue:English
Publié: 2003
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177330341
003 DE-627
005 20250209042656.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.818039  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177330341 
035 |a (NLM)18244690 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Manay, Siddharth  |e verfasserin  |4 aut 
245 1 0 |a Anti-geometric diffusion for adaptive thresholding and fast segmentation 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We utilize an anisotropic diffusion model, which we call the anti-geometric heat flow, for adaptive thresholding of bimodal images and for segmentation of more general greyscale images. In a departure from most anisotropic diffusion techniques, we select the local diffusion direction that smears edges in the image rather than seeking to preserve them. In this manner, we are able rapidly to detect and discriminate between entire image regions that lie near, but on opposite sides of, a prominent edge. The detection of such regions occurs during the diffusion process rather than afterward, thereby side-stepping the most notorious problem associated with diffusion methods, namely, when diffusion should stop. We initially outline a procedure for adaptive thresholding, but ultimately show how this model may be used in a region splitting procedure which, when combined with energy based region merging procedures, provides a general framework for image segmentation. We discuss a fast implementation of one such framework and demonstrate its effectiveness in segmenting medical, military, and scene imagery 
650 4 |a Journal Article 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 11 vom: 15., Seite 1310-23  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:11  |g day:15  |g pages:1310-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.818039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 11  |b 15  |h 1310-23