A random set view of texture classification

Texture classification of an image or subimage is an important problem in texture analysis. Many procedures have been proposed. A global framework for texture classification based on random closed set theory is proposed in this paper. In this approach, a binary texture is considered as an outcome of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 8 vom: 15., Seite 859-67
1. Verfasser: Epifanio, Irene (VerfasserIn)
Weitere Verfasser: Ayala, Guillermo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177330244
003 DE-627
005 20231223145953.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.801119  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177330244 
035 |a (NLM)18244680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Epifanio, Irene  |e verfasserin  |4 aut 
245 1 2 |a A random set view of texture classification 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Texture classification of an image or subimage is an important problem in texture analysis. Many procedures have been proposed. A global framework for texture classification based on random closed set theory is proposed in this paper. In this approach, a binary texture is considered as an outcome of a random closed set. Some distributional descriptors of this stochastic model are used as texture features in order to classify the binary texture, in particular spherical and linear contact distributions and K-functions. If a grayscale texture has to be classified, then the original texture is reduced to a multivariate random closed set where each component (a different random set) corresponds with those pixels verifying a local property. Again, some functional descriptors of the multivariate random closed set defined from the texture can be used as texture features to describe and classify the grayscale texture. Marginal and cross spherical and linear contact distributions and K-functions have been used. Experimental validation is provided by using Brodatz's database and another standard texture database 
650 4 |a Journal Article 
700 1 |a Ayala, Guillermo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 8 vom: 15., Seite 859-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:8  |g day:15  |g pages:859-67 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.801119  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 8  |b 15  |h 859-67