On the reconstruction of height functions and terrain maps from dense range data

This paper describes a method for combining multiple, dense range images to create surface reconstructions of height functions. Height functions are a special class of three-dimensional (3-D) surfaces, where one 3-D coordinate is a function of the other two. They are relevant for application domains...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 7 vom: 15., Seite 704-16
1. Verfasser: Whitaker, Ross T (VerfasserIn)
Weitere Verfasser: Juarez-Valdes, Ernesto Lautaro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177330112
003 DE-627
005 20250209042654.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.801589  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177330112 
035 |a (NLM)18244667 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Whitaker, Ross T  |e verfasserin  |4 aut 
245 1 0 |a On the reconstruction of height functions and terrain maps from dense range data 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper describes a method for combining multiple, dense range images to create surface reconstructions of height functions. Height functions are a special class of three-dimensional (3-D) surfaces, where one 3-D coordinate is a function of the other two. They are relevant for application domains such as terrain modeling or two-and-half dimensional surface reconstruction. Dense range maps are produced by either a range measuring device combined with a scanning mechanism or a triangulation scheme, such as active or passive stereo. The proposed method follows from a statistical formulation that characterizes the optimal surface estimate as the one that maximizes the posterior probability conditional on the input data and prior information about the application domain. Because the domain of the reconstruction is a two-dimensional (2-D) scalar function, the optimal surface can be expressed as an image, and the variational form of that optimization produces a 2-D partial differential equation (PDE). The PDE consists of two parts: a first-order data term and a second-order smoothing term. Thus optimal surface reconstruction is formulated as the solution to a second-order, nonlinear, PDE on an image, which is related to the family of PDE-based image processing algorithms in the literature. This paper presents the theory for reconstruction and some particular aspects of the numerical implementation. It also analyzes results on both synthetic and real data sets, which show a 75%-95% reduction of the RMS sensor error 
650 4 |a Journal Article 
700 1 |a Juarez-Valdes, Ernesto Lautaro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 7 vom: 15., Seite 704-16  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:7  |g day:15  |g pages:704-16 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.801589  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 7  |b 15  |h 704-16