Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance

We present a statistical view of the texture retrieval problem by combining the two related tasks, namely feature extraction (FE) and similarity measurement (SM), into a joint modeling and classification scheme. We show that using a consistent estimator of texture model parameters for the FE step fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 2 vom: 15., Seite 146-58
1. Verfasser: Do, Minh N (VerfasserIn)
Weitere Verfasser: Vetterli, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177329637
003 DE-627
005 20231223145953.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.982822  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177329637 
035 |a (NLM)18244620 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Do, Minh N  |e verfasserin  |4 aut 
245 1 0 |a Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a statistical view of the texture retrieval problem by combining the two related tasks, namely feature extraction (FE) and similarity measurement (SM), into a joint modeling and classification scheme. We show that using a consistent estimator of texture model parameters for the FE step followed by computing the Kullback-Leibler distance (KLD) between estimated models for the SM step is asymptotically optimal in term of retrieval error probability. The statistical scheme leads to a new wavelet-based texture retrieval method that is based on the accurate modeling of the marginal distribution of wavelet coefficients using generalized Gaussian density (GGD) and on the existence a closed form for the KLD between GGDs. The proposed method provides greater accuracy and flexibility in capturing texture information, while its simplified form has a close resemblance with the existing methods which uses energy distribution in the frequency domain to identify textures. Experimental results on a database of 640 texture images indicate that the new method significantly improves retrieval rates, e.g., from 65% to 77%, compared with traditional approaches, while it retains comparable levels of computational complexity 
650 4 |a Journal Article 
700 1 |a Vetterli, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 2 vom: 15., Seite 146-58  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:2  |g day:15  |g pages:146-58 
856 4 0 |u http://dx.doi.org/10.1109/83.982822  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 2  |b 15  |h 146-58