Signal detection and noise suppression using a wavelet transform signal processor : application to ultrasonic flaw detection

The utilization of signal processing techniques in nondestructive testing, especially in ultrasonics, is widespread. Signal averaging, matched filtering, frequency spectrum analysis, neural nets, and autoregressive analysis have all been used to analyze ultrasonic signals. The Wavelet Transform (WT)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 44(1997), 1 vom: 15., Seite 14-26
1. Verfasser: Abbate, A (VerfasserIn)
Weitere Verfasser: Koay, J, Frankel, J, Schroeder, S C, Das, P
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177324457
003 DE-627
005 20231223145947.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177324457 
035 |a (NLM)18244097 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abbate, A  |e verfasserin  |4 aut 
245 1 0 |a Signal detection and noise suppression using a wavelet transform signal processor  |b application to ultrasonic flaw detection 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The utilization of signal processing techniques in nondestructive testing, especially in ultrasonics, is widespread. Signal averaging, matched filtering, frequency spectrum analysis, neural nets, and autoregressive analysis have all been used to analyze ultrasonic signals. The Wavelet Transform (WT) is the most recent technique for processing signals with time-varying spectra. Interest in wavelets and their potential applications has resulted in an explosion of papers; some have called the wavelets the most significant mathematical event of the past decade. In this work, the Wavelet Transform is utilized to improve ultrasonic flaw detection in noisy signals as an alternative to the Split-Spectrum Processing (SSP) technique. In SSP, the frequency spectrum of the signal is split using overlapping Gaussian passband filters with different central frequencies and fixed absolute bandwidth. A similar approach is utilized in the WT, but in this case the relative bandwidth is constant, resulting in a filter bank with a self-adjusting window structure that can display the temporal variation of the signal's spectral components with varying resolutions. This property of the WT is extremely useful for detecting flaw echoes embedded in background noise. The detection of ultrasonic pulses using the wavelet transform is described and numerical results show good detection even for signal-to-noise ratios (SNR) of -15 dB. The improvement in detection was experimentally verified using steel samples with simulated flaws 
650 4 |a Journal Article 
700 1 |a Koay, J  |e verfasserin  |4 aut 
700 1 |a Frankel, J  |e verfasserin  |4 aut 
700 1 |a Schroeder, S C  |e verfasserin  |4 aut 
700 1 |a Das, P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 44(1997), 1 vom: 15., Seite 14-26  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:44  |g year:1997  |g number:1  |g day:15  |g pages:14-26 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 1997  |e 1  |b 15  |h 14-26