Recurrent neural network control for LCC-resonant ultrasonic motor drive

A newly designed driving circuit for the traveling wave-type ultrasonic motor (USM), which consists of a push-pull DC-DC power converter and a two-phase voltage source inverter using one inductance and two capacitances (LCC) resonant technique, is presented in this study. Moreover, because the dynam...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 47(2000), 3 vom: 28., Seite 737-49
1. Verfasser: Lin, F J (VerfasserIn)
Weitere Verfasser: Wai, R J, Hong, C M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177272678
003 DE-627
005 20250209041320.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/58.842063  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177272678 
035 |a (NLM)18238603 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, F J  |e verfasserin  |4 aut 
245 1 0 |a Recurrent neural network control for LCC-resonant ultrasonic motor drive 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A newly designed driving circuit for the traveling wave-type ultrasonic motor (USM), which consists of a push-pull DC-DC power converter and a two-phase voltage source inverter using one inductance and two capacitances (LCC) resonant technique, is presented in this study. Moreover, because the dynamic characteristics of the USM are difficult to obtain and the motor parameters are time varying, a recurrent neural network (RNN) controller is proposed to control the USM drive system. In the proposed controller, the dynamic backpropagation algorithm is adopted to train the RNN on-line using the proposed delta adaptation law. Furthermore, to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates for the training of the RNN. Finally, the effectiveness of the RNN-controlled USM drive system is demonstrated by some experimental results 
650 4 |a Journal Article 
700 1 |a Wai, R J  |e verfasserin  |4 aut 
700 1 |a Hong, C M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 47(2000), 3 vom: 28., Seite 737-49  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:47  |g year:2000  |g number:3  |g day:28  |g pages:737-49 
856 4 0 |u http://dx.doi.org/10.1109/58.842063  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2000  |e 3  |b 28  |h 737-49