On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates
The frequency spectra of resonant modes in AT- and SC-cut quartz plates and their frequency-temperature behavior were studied using Mindlin first- and third-order plate equations. Both straight-crested wave solutions and two-dimensional plate solutions were studied. The first-order Mindlin plate the...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 46(1999), 1 vom: 28., Seite 1-13 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
1999
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article |
Zusammenfassung: | The frequency spectra of resonant modes in AT- and SC-cut quartz plates and their frequency-temperature behavior were studied using Mindlin first- and third-order plate equations. Both straight-crested wave solutions and two-dimensional plate solutions were studied. The first-order Mindlin plate theory with shear correction factors was previously found to yield inaccurate frequency spectra of the modes in the vicinity of the fundamental thickness-shear frequency. The third-order Mindlin plate equations without correction factors, on the other hand, predict well the frequency spectrum in the same vicinity. In general, the frequency-temperature curves of the fundamental thickness-shear obtained from the first-order Mindlin plate theory are sufficiently different from those of the third-order Mindlin plate theory that they raise concerns. The least accurately predicted mode of vibration is the flexure mode, which results in discrepancies in its frequency-temperature behavior. The accuracy of other modes of vibrations depends on the degree of couplings with the flexure mode. Mindlin first-order plate theory with only the shear correction factors is not sufficiently accurate for high frequency crystal vibrations at the fundamental thickness-shear frequency. Comparison with measured resonant frequencies and frequency-temperature results on an AT-cut quartz plate shows that the third-order plate theory is more accurate than the first-order plate theory; this is especially true for the technically important fundamental thickness shear mode in the AT-cut quartz plate |
---|---|
Beschreibung: | Date Completed 16.12.2009 Date Revised 01.02.2008 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/58.741418 |