Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm

In this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Fuzzy-neural networks are traditionally trained by using gradient-based methods, which may f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 33(2003), 6 vom: 28., Seite 966-76
1. Verfasser: Wang, Wei-Yen (VerfasserIn)
Weitere Verfasser: Li, Yi-Hsum
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177269138
003 DE-627
005 20250209041247.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2003.810872  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177269138 
035 |a (NLM)18238247 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei-Yen  |e verfasserin  |4 aut 
245 1 0 |a Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Fuzzy-neural networks are traditionally trained by using gradient-based methods, which may fall into local minimum during the learning process. To overcome the problems encountered by the conventional learning methods, genetic algorithms are adopted because of their capabilities of directed random search for global optimization. It is well known, however, that the searching speed of the conventional genetic algorithms is not desirable. Such conventional genetic algorithms are inherently incapable of dealing with a vast number (over 100) of adjustable parameters in the fuzzy-neural networks. In this paper, the RGA is proposed by using a sequential-search-based crossover point (SSCP) method in which a better crossover point is determined and only the gene at the specified crossover point is crossed, serving as a single gene crossover operation. Chromosomes consisting of both, the control points of BMFs and the weightings of the fuzzy-neural network are coded as an adjustable vector with real number components that are searched by the RGA. Simulation results have shown that faster convergence of the evolution process searching for an optimal fuzzy-neural network can be achieved. Examples of nonlinear functions approximated by using the fuzzy-neural network via the RGA are demonstrated to illustrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Li, Yi-Hsum  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 33(2003), 6 vom: 28., Seite 966-76  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:33  |g year:2003  |g number:6  |g day:28  |g pages:966-76 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2003.810872  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2003  |e 6  |b 28  |h 966-76