A width-invariant property of curves based on wavelet transform with a novel wavelet function

This paper is an improvement on the characterization of edges. Using a novel wavelet function, it is proven that the maximum moduli of the wavelet transform (MMWT) of a curve produces two new symmetrical curves on both sides of the original with the same direction. The distance between the two curve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 33(2003), 3 vom: 28., Seite 541-8
1. Verfasser: Yang, Lihua (VerfasserIn)
Weitere Verfasser: Suen, C Y, Tang, Yuan Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper is an improvement on the characterization of edges. Using a novel wavelet function, it is proven that the maximum moduli of the wavelet transform (MMWT) of a curve produces two new symmetrical curves on both sides of the original with the same direction. The distance between the two curves is shown to be independent of the width d of the original curve if the scale s of the wavelet transform satisfies s/spl ges/d. This property provides a novel method of obtaining the skeletons of the curves in an image
Beschreibung:Date Completed 02.10.2012
Date Revised 01.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0492
DOI:10.1109/TSMCB.2003.810949