A new scheme for fuzzy rule-based system identification and its application to self-tuning fuzzy controllers

There are many important issues that need to be resolved for identification of a fuzzy rule-based system using clustering. We address three such important issues: 1) deciding on the proper domain(s) of clustering; 2) deciding on the number of rules; and 3) getting an initial estimate of parameters o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 32(2002), 4 vom: 28., Seite 470-82
1. Verfasser: Pal, K (VerfasserIn)
Weitere Verfasser: Mudi, R K, Pal, N R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177268093
003 DE-627
005 20250209041237.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2002.1018766  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177268093 
035 |a (NLM)18238143 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pal, K  |e verfasserin  |4 aut 
245 1 2 |a A new scheme for fuzzy rule-based system identification and its application to self-tuning fuzzy controllers 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There are many important issues that need to be resolved for identification of a fuzzy rule-based system using clustering. We address three such important issues: 1) deciding on the proper domain(s) of clustering; 2) deciding on the number of rules; and 3) getting an initial estimate of parameters of the fuzzy systems. We justify that one should start with separate clustering of X (input) and Y (output). We propose a scheme to establish correspondence between the clusters obtained in X and Y. The correspondence dictates whether further splitting/merging of clusters is needed or not. If X and Y do not exhibit strong cluster substructures, then again clustering of X* (input data augmented by the output data) exploiting the results of separate clustering of X and Y, and of the correspondence scheme is recommended. We justify that usual cluster validity indices are not suitable for finding the number of rules, and the proposed scheme does not use any cluster validity index. Three methods are suggested to get the initial estimate of membership functions (MFs). The proposed scheme is used to identify the rule base needed to realize a self-tuning fuzzy PI-type controller and its performance is found to be quite satisfactory 
650 4 |a Journal Article 
700 1 |a Mudi, R K  |e verfasserin  |4 aut 
700 1 |a Pal, N R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 32(2002), 4 vom: 28., Seite 470-82  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:32  |g year:2002  |g number:4  |g day:28  |g pages:470-82 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2002.1018766  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2002  |e 4  |b 28  |h 470-82