The training of neural classifiers with condensed datasets

In this paper we apply a k-nearest-neighbor-based data condensing algorithm to the training set of multilayer perceptron neural networks. By removing the overlapping data and retaining only training exemplars adjacent to the decision boundary we are able to significantly speed the network training t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 32(2002), 2 vom: 28., Seite 202-6
1. Verfasser: Choi, S H (VerfasserIn)
Weitere Verfasser: Rockett, P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177267852
003 DE-627
005 20250209041234.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/3477.990876  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177267852 
035 |a (NLM)18238119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Choi, S H  |e verfasserin  |4 aut 
245 1 4 |a The training of neural classifiers with condensed datasets 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper we apply a k-nearest-neighbor-based data condensing algorithm to the training set of multilayer perceptron neural networks. By removing the overlapping data and retaining only training exemplars adjacent to the decision boundary we are able to significantly speed the network training time while achieving an undegraded misclassification rate compared to a network trained on the unedited training set. We report results on a range of synthetic and real datasets that indicate that a training speed-up of an order of magnitude is typical 
650 4 |a Journal Article 
700 1 |a Rockett, P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 32(2002), 2 vom: 28., Seite 202-6  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:32  |g year:2002  |g number:2  |g day:28  |g pages:202-6 
856 4 0 |u http://dx.doi.org/10.1109/3477.990876  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2002  |e 2  |b 28  |h 202-6