Relevance feedback in content-based image retrieval : Bayesian framework, feature subspaces, and progressive learning

Research has been devoted in the past few years to relevance feedback as an effective solution to improve performance of content-based image retrieval (CBIR). In this paper, we propose a new feedback approach with progressive learning capability combined with a novel method for the feature subspace...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 8 vom: 28., Seite 924-37
1. Verfasser: Su, Zhong (VerfasserIn)
Weitere Verfasser: Zhang, Hongjiang, Li, Stan, Ma, Shaoping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177266414
003 DE-627
005 20231223145831.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.815254  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177266414 
035 |a (NLM)18237966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Zhong  |e verfasserin  |4 aut 
245 1 0 |a Relevance feedback in content-based image retrieval  |b Bayesian framework, feature subspaces, and progressive learning 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2009 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Research has been devoted in the past few years to relevance feedback as an effective solution to improve performance of content-based image retrieval (CBIR). In this paper, we propose a new feedback approach with progressive learning capability combined with a novel method for the feature subspace extraction. The proposed approach is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. Positive examples are used to estimate a Gaussian distribution that represents the desired images for a given query; while the negative examples are used to modify the ranking of the retrieved candidates. In addition, feature subspace is extracted and updated during the feedback process using a principal component analysis (PCA) technique and based on user's feedback. That is, in addition to reducing the dimensionality of feature spaces, a proper subspace for each type of features is obtained in the feedback process to further improve the retrieval accuracy. Experiments demonstrate that the proposed method increases the retrieval speed, reduces the required memory and improves the retrieval accuracy significantly 
650 4 |a Journal Article 
700 1 |a Zhang, Hongjiang  |e verfasserin  |4 aut 
700 1 |a Li, Stan  |e verfasserin  |4 aut 
700 1 |a Ma, Shaoping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 8 vom: 28., Seite 924-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:8  |g day:28  |g pages:924-37 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.815254  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 8  |b 28  |h 924-37