Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration

In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichann...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 7 vom: 28., Seite 826-37
1. Verfasser: Lee, Eun Sil (VerfasserIn)
Weitere Verfasser: Kang, Moon Gi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177266325
003 DE-627
005 20231223145831.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.811488  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177266325 
035 |a (NLM)18237957 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Eun Sil  |e verfasserin  |4 aut 
245 1 0 |a Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for applications with multiframe environments. Since the registration error in each low-resolution image has a different pattern, the regularization parameters are determined adaptively for each channel. We propose two methods for estimating the regularization parameter automatically. The proposed algorithms are robust against registration error noise, and they do not require any prior information about the original image or the registration error process. Information needed to determine the regularization parameter and to reconstruct the image is updated at each iteration step based on the available partially reconstructed image. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation 
650 4 |a Journal Article 
700 1 |a Kang, Moon Gi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 7 vom: 28., Seite 826-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:7  |g day:28  |g pages:826-37 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.811488  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 7  |b 28  |h 826-37