Texture classification using spectral histograms

Based on a local spatial/frequency representation,we employ a spectral histogram as a feature statistic for texture classification. The spectral histogram consists of marginal distributions of responses of a bank of filters and encodes implicitly the local structure of images through the filtering s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 6 vom: 28., Seite 661-70
1. Verfasser: Liu, Xiuwen (VerfasserIn)
Weitere Verfasser: Wang, DeLiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177266163
003 DE-627
005 20250209041217.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.812327  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177266163 
035 |a (NLM)18237941 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiuwen  |e verfasserin  |4 aut 
245 1 0 |a Texture classification using spectral histograms 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Based on a local spatial/frequency representation,we employ a spectral histogram as a feature statistic for texture classification. The spectral histogram consists of marginal distributions of responses of a bank of filters and encodes implicitly the local structure of images through the filtering stage and the global appearance through the histogram stage. The distance between two spectral histograms is measured using chi(2)-statistic. The spectral histogram with the associated distance measure exhibits several properties that are necessary for texture classification. A filter selection algorithm is proposed to maximize classification performance of a given dataset. Our classification experiments using natural texture images reveal that the spectral histogram representation provides a robust feature statistic for textures and generalizes well. Comparisons show that our method produces a marked improvement in classification performance. Finally we point out the relationships between existing texture features and the spectral histogram, suggesting that the latter may provide a unified texture feature 
650 4 |a Journal Article 
700 1 |a Wang, DeLiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 6 vom: 28., Seite 661-70  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:6  |g day:28  |g pages:661-70 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.812327  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 6  |b 28  |h 661-70