Object segmentation and labeling by learning from examples

We propose a system that employs low-level image segmentation followed by color and two-dimensional (2-D) shape matching to automatically group those low-level segments into objects based on their similarity to a set of example object templates presented by the user. A hierarchical content tree data...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 6 vom: 28., Seite 627-38
1. Verfasser: Xu, Yaowu (VerfasserIn)
Weitere Verfasser: Saber, Eli, Tekalp, A Murat
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177266120
003 DE-627
005 20231223145831.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.810595  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177266120 
035 |a (NLM)18237937 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yaowu  |e verfasserin  |4 aut 
245 1 0 |a Object segmentation and labeling by learning from examples 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a system that employs low-level image segmentation followed by color and two-dimensional (2-D) shape matching to automatically group those low-level segments into objects based on their similarity to a set of example object templates presented by the user. A hierarchical content tree data structure is used for each database image to store matching combinations of low-level regions as objects. The system automatically initializes the content tree with only "elementary nodes" representing homogeneous low-level regions. The "learning" phase refers to labeling of combinations of low-level regions that have resulted in successful color and/or 2-D shape matches with the example template(s). These combinations are labeled as "object nodes" in the hierarchical content tree. Once learning is performed, the speed of second-time retrieval of learned objects in the database increases significantly. The learning step can be performed off-line provided that example objects are given in the form of user interest profiles. Experimental results are presented to demonstrate the effectiveness of the proposed system with hierarchical content tree representation and learning by color and 2-D shape matching on collections of car and face images 
650 4 |a Journal Article 
700 1 |a Saber, Eli  |e verfasserin  |4 aut 
700 1 |a Tekalp, A Murat  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 6 vom: 28., Seite 627-38  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:6  |g day:28  |g pages:627-38 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.810595  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 6  |b 28  |h 627-38