|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM177266007 |
003 |
DE-627 |
005 |
20231223145830.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2003 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2003.811493
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0591.xml
|
035 |
|
|
|a (DE-627)NLM177266007
|
035 |
|
|
|a (NLM)18237925
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Meijering, Erik
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A note on cubic convolution interpolation
|
264 |
|
1 |
|c 2003
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.12.2009
|
500 |
|
|
|a Date Revised 01.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Unser, Michael
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 12(2003), 4 vom: 28., Seite 477-9
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:12
|g year:2003
|g number:4
|g day:28
|g pages:477-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2003.811493
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 12
|j 2003
|e 4
|b 28
|h 477-9
|