Motion analysis and segmentation through spatio-temporal slices processing

This paper presents new approaches in characterizing and segmenting the content of video. These approaches are developed based upon the pattern analysis of spatio-temporal slices. While traditional approaches to motion sequence analysis tend to formulate computational methodologies on two or three a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 3 vom: 28., Seite 341-55
1. Verfasser: Ngo, Chong-Wah (VerfasserIn)
Weitere Verfasser: Pong, Ting-Chuen, Zhang, Hong-Jiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper presents new approaches in characterizing and segmenting the content of video. These approaches are developed based upon the pattern analysis of spatio-temporal slices. While traditional approaches to motion sequence analysis tend to formulate computational methodologies on two or three adjacent frames, spatio-temporal slices provide rich visual patterns along a larger temporal scale. We first describe a motion computation method based on a structure tensor formulation. This method encodes visual patterns of spatio-temporal slices in a tensor histogram, on one hand, characterizing the temporal changes of motion over time, on the other hand, describing the motion trajectories of different moving objects. By analyzing the tensor histogram of an image sequence, we can temporally segment the sequence into several motion coherent subunits, in addition, spatially segment the sequence into various motion layers. The temporal segmentation of image sequences expeditiously facilitates the motion annotation and content representation of a video, while the spatial decomposition of image sequences leads to a prominent way of reconstructing background panoramic images and computing foreground objects
Beschreibung:Date Completed 14.12.2009
Date Revised 01.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2003.809020