A minimum entropy approach to adaptive image polygonization

This paper introduces a novel adaptive image segmentation algorithm which represents images by polygonal segments. The algorithm is based on an intuitive generative model for pixel intensities and its associated cost function which can be effectively optimized by a hierarchical triangulation algorit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 10 vom: 28., Seite 1243-58
1. Verfasser: Hermes, Lothar (VerfasserIn)
Weitere Verfasser: Buhmann, Joachim M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177265663
003 DE-627
005 20250209041212.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.817240  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177265663 
035 |a (NLM)18237890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hermes, Lothar  |e verfasserin  |4 aut 
245 1 2 |a A minimum entropy approach to adaptive image polygonization 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a novel adaptive image segmentation algorithm which represents images by polygonal segments. The algorithm is based on an intuitive generative model for pixel intensities and its associated cost function which can be effectively optimized by a hierarchical triangulation algorithm. A triangular mesh is iteratively refined and reorganized to extract a compact description of the essential image structure. After analyzing fundamental convexity properties of our cost function, we adapt an information-theoretic bound to assess the statistical significance of a given triangulation step. The bound effectively defines a stopping criterion to limit the number of triangles in the mesh, thereby avoiding undesirable overfitting phenomena. It also facilitates the development of a multiscale variant of the triangulation algorithm, which substantially improves its computational demands. The algorithm has various applications in contextual classification, remote sensing, and visual object recognition. It is particularly suitable for the segmentation of noisy imagery 
650 4 |a Journal Article 
700 1 |a Buhmann, Joachim M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 10 vom: 28., Seite 1243-58  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:10  |g day:28  |g pages:1243-58 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.817240  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 10  |b 28  |h 1243-58