A curve evolution approach to object-based tomographic reconstruction

In this paper, we develop a new approach to tomographic reconstruction problems based on geometric curve evolution techniques. We use a small set of texture coefficients to represent the object and background inhomogeneities and a contour to represent the boundary of multiple connected or unconnecte...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 1 vom: 28., Seite 44-57
1. Verfasser: Feng, Haihua (VerfasserIn)
Weitere Verfasser: Karl, William Clem, Castañon, David A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17726554X
003 DE-627
005 20231223145830.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.806253  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM17726554X 
035 |a (NLM)18237878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Haihua  |e verfasserin  |4 aut 
245 1 2 |a A curve evolution approach to object-based tomographic reconstruction 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we develop a new approach to tomographic reconstruction problems based on geometric curve evolution techniques. We use a small set of texture coefficients to represent the object and background inhomogeneities and a contour to represent the boundary of multiple connected or unconnected objects. Instead of reconstructing pixel values on a fixed rectangular grid, we then find a reconstruction by jointly estimating these unknown contours and texture coefficients of the object and background. By designing a new "tomographic flow", the resulting problem is recast into a curve evolution problem and an efficient algorithm based on level set techniques is developed. The performance of the curve evolution method is demonstrated using examples with noisy limited-view Radon transformed data and noisy ground-penetrating radar data. The reconstruction results and computational cost are compared with those of conventional, pixel-based regularization methods. The results indicate that the curve evolution methods achieve improved shape reconstruction and have potential computation and memory advantages over conventional regularized inversion methods 
650 4 |a Journal Article 
700 1 |a Karl, William Clem  |e verfasserin  |4 aut 
700 1 |a Castañon, David A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 1 vom: 28., Seite 44-57  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:1  |g day:28  |g pages:44-57 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.806253  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 1  |b 28  |h 44-57