Investigation of solid-phase buffers for sulfur-oxidizing autotrophic denitrification

This paper investigates biological denitrification using autotrophic microorganisms that use elemental sulfur as an electron donor. In this process, for each gram of nitrate-nitrogen removed, approximately 4.5 g of alkalinity (as calcium carbonate) are consumed. Because denitrification is severely i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 79(2007), 13 vom: 15. Dez., Seite 2519-26
1. Verfasser: Sengupta, Sukalyan (VerfasserIn)
Weitere Verfasser: Ergas, Sarina J, Lopez-Luna, Erika
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nitrates Sulfur 70FD1KFU70 Calcium Carbonate H0G9379FGK Nitrogen N762921K75
Beschreibung
Zusammenfassung:This paper investigates biological denitrification using autotrophic microorganisms that use elemental sulfur as an electron donor. In this process, for each gram of nitrate-nitrogen removed, approximately 4.5 g of alkalinity (as calcium carbonate) are consumed. Because denitrification is severely inhibited below pH 5.5, and alkalinity present in the influent wastewaters is less than the alkalinity consumed, an external buffer was needed to arrest any drop in pH from alkalinity consumption. A packed-bed bioreactor configuration is ideally suited to handle variations in flow and nitrate loading from decentralized wastewater treatment systems, as it is a passive system and thus requires minimal maintenance; therefore, a solid-phase buffer packed with the elemental sulfur in the bioreactor is most suitable. In this research, marble chips, limestone, and crushed oyster shells were tested as solid-phase buffers. Bench- and field-scale studies indicated that crushed oyster shell was the most suitable buffer based on (1) the rate of dissolution of buffer and the buffering agent released (carbonate, bicarbonate, or hydroxide), (2) the ability of the buffer surface to act as host for microbial attachment, (3) turbidity of the solution upon release of the buffering agent, and (4) economics
Beschreibung:Date Completed 03.03.2008
Date Revised 23.09.2019
published: Print
Citation Status MEDLINE
ISSN:1554-7531