Visual perception and mixed-initiative interaction for assisted visualization design
This paper describes the integration of perceptual guidelines from human vision with an AI-based mixed-initiative search strategy. The result is a visualization assistant called ViA, a system that collaborates with its users to identify perceptually salient visualizations for large, multidimensional...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1998. - 14(2008), 2 vom: 15. März, Seite 396-411 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | This paper describes the integration of perceptual guidelines from human vision with an AI-based mixed-initiative search strategy. The result is a visualization assistant called ViA, a system that collaborates with its users to identify perceptually salient visualizations for large, multidimensional datasets. ViA applies knowledge of low-level human vision to: (1) evaluate the effectiveness of a particular visualization for a given dataset and analysis tasks; and (2) rapidly direct its search towards new visualizations that are most likely to offer improvements over those seen to date. Context, domain expertise, and a high-level understanding of a dataset are critical to identifying effective visualizations. We apply a mixed-initiative strategy that allows ViA and its users to share their different strengths and continually improve ViA's understanding of a user's preferences. We visualize historical weather conditions to compare ViA's search strategy to exhaustive analysis, simulated annealing, and reactive tabu search, and to measure the improvement provided by mixed-initiative interaction. We also visualize intelligent agents competing in a simulated online auction to evaluate ViA's perceptual guidelines. Results from each study are positive, suggesting that ViA can construct high-quality visualizations for a range of real-world datasets |
---|---|
Beschreibung: | Date Completed 02.04.2008 Date Revised 14.01.2008 published: Print Citation Status MEDLINE |
ISSN: | 1077-2626 |
DOI: | 10.1109/TVCG.2007.70436 |