Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants

To understand the mechanisms of ion homeostasis in salt-tolerant and salt-sensitive plants, cDNAs for a high-affinity K(+) transporter PhaHKT1 were isolated from salt-sensitive (Utsunomiya) and salt-tolerant (Nanpi, Enchi) reed plants. A cDNA of Utsunomiya (PhaHKT1-u) contained two insertions in the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 58(2007), 15-16 vom: 12., Seite 4387-95
1. Verfasser: Takahashi, Ryuichi (VerfasserIn)
Weitere Verfasser: Liu, Shenkui, Takano, Tetsuo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cation Transport Proteins DNA, Complementary HKT1 protein, plant Plant Proteins Symporters Sodium Chloride 451W47IQ8X Potassium RWP5GA015D
Beschreibung
Zusammenfassung:To understand the mechanisms of ion homeostasis in salt-tolerant and salt-sensitive plants, cDNAs for a high-affinity K(+) transporter PhaHKT1 were isolated from salt-sensitive (Utsunomiya) and salt-tolerant (Nanpi, Enchi) reed plants. A cDNA of Utsunomiya (PhaHKT1-u) contained two insertions in the region corresponding to the first and second introns of the PhaHKT1 gene, which resulted in a sequence 141 amino acid residues shorter than that of Nanpi. Expression of PhaHKT1 mRNA was detected in the roots of Nanpi and Enchi plants under K(+) starvation conditions and also under Na(+) treatment conditions, whereas it was only slightly detected in the roots of Utsunomiya plants under each of these conditions. In the upper parts, PhaHKT1 expression was detected in the Utsunomiya plants, and two signals were obtained in the Nanpi and Enchi plants under all and K(+) starvation conditions, respectively. Yeasts expressing the PhaHKT1 of Nanpi (PhaHKT1-n) or the PhaHKT1 of Enchi (PhaHKT1-e) grew better in the presence of NaCl than yeast expressing PhaHKT1-u. Furthermore, yeast expressing a chimeric cDNA containing the 5' region of the Utsunomiya gene and the 3' region of the Nanpi gene had partial salt tolerance, and yeast expressing a chimeric cDNA containing the 5' region of the Nanpi gene and the 3' region of the Utsunomiya gene had a reduced ability to take up ions. These results suggest that PhaHKT1 plays an important role in the acquisition of K(+) and maintenance of ion balance under saline conditions
Beschreibung:Date Completed 28.04.2008
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erm306