Directed synthesis of stable large polyoxomolybdate spheres

Polyoxometalates or POMs, a class of inorganic transition metal-oxide based clusters, have gained significant interest owing to their catalytic, magnetic, and material science applications. All such applications require high surface area POM based materials. However, chemically synthesized POMs are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 3 vom: 05. Feb., Seite 666-9
1. Verfasser: Roy, Soumyajit (VerfasserIn)
Weitere Verfasser: Bossers, Lydia C A M, Meeldijk, Hans J D, Kuipers, Bonny W M, Kegel, Willem K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polyoxometalates or POMs, a class of inorganic transition metal-oxide based clusters, have gained significant interest owing to their catalytic, magnetic, and material science applications. All such applications require high surface area POM based materials. However, chemically synthesized POMs are still at most in the range of a few nanometers, with their size and morphology being difficult to control. Hence, there is an immediate need to develop design principles that allow easy control of POM morphology and size on mesoscopic (50-500 nm) length scales. Here, we report a design strategy to meet this need. Our method reported here avoids a complex chemical labyrinth by using a prefabricated cationic 1,2-dioleol-3-trimethylammonium-propane (DOTAP) vesicle as a scaffold/structure directing agent and gluing simple anionic heptamolybdates by electrostatic interaction and hydrogen bonds to form large POM spheres. By this method, complexity in the resulting structure can be deliberately induced either via the scaffold or via the oxometalate. The high degree of control in the matter of the size and morphology of the resulting POM superstructures renders this method attractive from a synthetic standpoint
Beschreibung:Date Completed 02.04.2008
Date Revised 29.01.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la703467d