Gaussian process dynamical models for human motion

We introduce Gaussian process dynamical models (GPDM) for nonlinear time series analysis, with applications to learning models of human pose and motion from high-dimensionalmotion capture data. A GPDM is a latent variable model. It comprises a low-dimensional latent space with associated dynamics, a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 2 vom: 15. Feb., Seite 283-98
Auteur principal: Wang, Jack M (Auteur)
Autres auteurs: Fleet, David J, Hertzmann, Aaron
Format: Article
Langue:English
Publié: 2008
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.