Three-view multibody structure from motion

We propose a geometric approach to 3-D motion segmentation from point correspondences in three perspective views. We demonstrate that after applying a polynomial embedding to the point correspondences they become related by the socalled multibody trilinear constraint and its associated multibody tri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 2 vom: 15. Feb., Seite 214-27
1. Verfasser: Vidal, René (VerfasserIn)
Weitere Verfasser: Hartley, Richard
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM175789002
003 DE-627
005 20231223142744.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0586.xml 
035 |a (DE-627)NLM175789002 
035 |a (NLM)18084054 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vidal, René  |e verfasserin  |4 aut 
245 1 0 |a Three-view multibody structure from motion 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.03.2008 
500 |a Date Revised 17.12.2007 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a geometric approach to 3-D motion segmentation from point correspondences in three perspective views. We demonstrate that after applying a polynomial embedding to the point correspondences they become related by the socalled multibody trilinear constraint and its associated multibody trifocal tensor, which are natural generalizations of the trilinear constraint and the trifocal tensor to multiple motions. We derive a rank constraint on the embedded correspondences, from which one can estimate the number of independent motions as well as linearly solve for the multibody trifocal tensor. We then show how to compute the epipolar lines associated with each image point from the common root of a set of univariate polynomials and the epipoles by solving a pair of plane clustering problems using Generalized PCA (GPCA). The individual trifocal tensors are then obtained from the second order derivatives of the multibody trilinear constraint. Given epipolar lines and epipoles, or trifocal tensors, one can immediately obtain an initial clustering of the correspondences. We use this clustering to initialize an iterative algorithm that alternates between the computation of the trifocal tensors and the segmentation of the correspondences. We test our algorithm on various synthetic and real scenes, and compare with other algebraic and iterative algorithms 
650 4 |a Journal Article 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 2 vom: 15. Feb., Seite 214-27  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:2  |g day:15  |g month:02  |g pages:214-27 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 2  |b 15  |c 02  |h 214-27