Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables

Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological processes controlled partly by stomatal behavior. Water-use efficiency (WUE) reflects the coupling relationship to some extent. At stand and ecosystem levels, the variability of WUE results from the trade-off between wa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 177(2008), 4 vom: 15., Seite 927-937
1. Verfasser: Yu, Guirui (VerfasserIn)
Weitere Verfasser: Song, Xia, Wang, Qiufeng, Liu, Yunfen, Guan, Dexin, Yan, Junhua, Sun, Xiaomin, Zhang, Leiming, Wen, Xuefa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water 059QF0KO0R Carbon 7440-44-0
Beschreibung
Zusammenfassung:Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological processes controlled partly by stomatal behavior. Water-use efficiency (WUE) reflects the coupling relationship to some extent. At stand and ecosystem levels, the variability of WUE results from the trade-off between water loss and C gain in the process of plant photosynthetic C assimilation. Continuous observations of C, water, and energy fluxes were made at three selected forest sites of ChinaFLUX with eddy covariance systems from 2003 to 2005. WUE at different temporal scales were defined and calculated with different C and water flux components. Variations in WUE were found among three sites. Average annual WUE was 9.43 mg CO(2) g(-1) H(2)O at Changbaishan temperate broad-leaved Korean pine mixed forest, 9.27 mg CO(2) g(-1) H(2)O at Qianyanzhou subtropical coniferous plantation, and 6.90 mg CO(2) g(-1) H(2)O at Dinghushan subtropical evergreen broad-leaved forest. It was also found that temperate and subtropical forest ecosystems had different relationships between gross primary productivity (GPP) and evapotranspiration (ET). Variations in WUE indicated the difference in the coupling between C and water cycles. The asynchronous response of GPP and ET to climatic variables determined the coupling and decoupling between C and water cycles for the two regional forest ecosystems
Beschreibung:Date Completed 29.04.2008
Date Revised 16.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2007.02316.x