|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM175411212 |
003 |
DE-627 |
005 |
20231223141943.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0585.xml
|
035 |
|
|
|a (DE-627)NLM175411212
|
035 |
|
|
|a (NLM)18044362
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Beydilli, M Inan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.01.2008
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Coloring Agents
|2 NLM
|
650 |
|
7 |
|a Naphthalenesulfonates
|2 NLM
|
650 |
|
7 |
|a Triazines
|2 NLM
|
650 |
|
7 |
|a reactive red 2
|2 NLM
|
700 |
1 |
|
|a Pavlostathis, Spyros G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 79(2007), 12 vom: 10. Nov., Seite 2446-56
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:79
|g year:2007
|g number:12
|g day:10
|g month:11
|g pages:2446-56
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 79
|j 2007
|e 12
|b 10
|c 11
|h 2446-56
|