|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM175390509 |
003 |
DE-627 |
005 |
20231223141918.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2007.02290.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0585.xml
|
035 |
|
|
|a (DE-627)NLM175390509
|
035 |
|
|
|a (NLM)18042198
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liao, Chengzhang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Altered ecosystem carbon and nitrogen cycles by plant invasion
|b a meta-analysis
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.05.2008
|
500 |
|
|
|a Date Revised 08.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Plant invasion potentially alters ecosystem carbon (C) and nitrogen (N) cycles. However, the overall direction and magnitude of such alterations are poorly quantified. Here, 94 experimental studies were synthesized, using a meta-analysis approach, to quantify the changes of 20 variables associated with C and N cycles, including their pools, fluxes, and other related parameters in response to plant invasion. Pool variables showed significant changes in invaded ecosystems relative to native ecosystems, ranging from a 5% increase in root carbon stock to a 133% increase in shoot C stock. Flux variables, such as above-ground net primary production and litter decomposition, increased by 50-120% in invaded ecosystems, compared with native ones. Plant N concentration, soil NH+4 and NO-3 concentrations were 40, 30 and 17% higher in invaded than in native ecosystems, respectively. Increases in plant production and soil N availability indicate that there was positive feedback between plant invasion and C and N cycles in invaded ecosystems. Invasions by woody and N-fixing plants tended to have greater impacts on C and N cycles than those by herbaceous and nonN-fixing plants, respectively. The responses to plant invasion are not different among forests, grasslands, and wetlands. All of these changes suggest that plant invasion profoundly influences ecosystem processes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Meta-Analysis
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Peng, Ronghao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Yiqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Xuhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Xiaowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fang, Changming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jiakuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Bo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 177(2008), 3 vom: 01., Seite 706-714
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:177
|g year:2008
|g number:3
|g day:01
|g pages:706-714
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2007.02290.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 177
|j 2008
|e 3
|b 01
|h 706-714
|