|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM175286795 |
003 |
DE-627 |
005 |
20231223141712.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0584.xml
|
035 |
|
|
|a (DE-627)NLM175286795
|
035 |
|
|
|a (NLM)18031071
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Yingwei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Gas adsorption and storage in metal-organic framework MOF-177
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.01.2008
|
500 |
|
|
|a Date Revised 11.12.2007
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal-organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of approximately 0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H2 on MOF-177 were -11.3 to -5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of approximately 2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N2 and O2 adsorption measurements showed that O2 was adsorbed more favorably than N2 on MOF-177 with a selectivity of approximately 1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for O2 while being concave for N2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to approximately 10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying)
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yang, Ralph T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 23(2007), 26 vom: 18. Dez., Seite 12937-44
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:26
|g day:18
|g month:12
|g pages:12937-44
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 26
|b 18
|c 12
|h 12937-44
|