Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2

The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translationa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 177(2008), 2 vom: 01., Seite 525-536
1. Verfasser: Wang, Yuh-Shuh (VerfasserIn)
Weitere Verfasser: Yoo, Cheol-Min, Blancaflor, Elison B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. ATFIM1 protein, Arabidopsis Actins Arabidopsis Proteins Green Fluorescent Proteins 147336-22-9
Beschreibung
Zusammenfassung:The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development
Beschreibung:Date Completed 29.02.2008
Date Revised 16.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2007.02261.x