|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM175036551 |
003 |
DE-627 |
005 |
20231223141220.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0584.xml
|
035 |
|
|
|a (DE-627)NLM175036551
|
035 |
|
|
|a (NLM)18004896
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kotiaho, Anne
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Gold nanoparticle enhanced charge transfer in thin film assemblies of porphyrin-fullerene dyads
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.01.2008
|
500 |
|
|
|a Date Revised 11.12.2007
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Photoinduced vectorial electron transfer in a molecularly organized porphyrin-fullerene (PF) dyad film is enhanced by the interlayer charge transfer from the porphyrin moiety of the dyad to an octanethiol protected (dcore approximately 2 nm) gold nanoparticle (AuNP) film. By using the time-resolved Maxwell displacement charge (TRMDC) method, the charge separation distance was found to increase by 5 times in a multilayer film structure where the gold nanoparticles face the porphyrin moiety of the dyad, that is, AuNP|PF, compared to the case of the PF layer alone. Films were assembled by the Langmuir-Blodgett (LB) method using octadecylamine (ODA) as the matrix compound. Atomic force microscopy (AFM) images of the monolayers revealed that AuNPs are arranged into continuous, islandlike structures and PF dyads form clusters. The porphyrin reference layer was assembled with the AuNP layer to gain insight on the interaction mechanism between porphyrin and gold nanoparticles. Interlayer electron transfer was also observed between the AuNPs and porphyrin reference, but the efficiency is lower than that in the AuNP|PF film. Fluorescence emission of the reference porphyrin is slightly quenched, and fluorescence decay becomes faster in the presence of AuNPs. The proposed mechanism for the electron transfer in the AuNP|PF film is thus the primary electron transfer from the porphyrin to the fullerene followed by a secondary hole transfer from the porphyrin to the AuNPs, resulting in an increased charge separation distance and enhanced photovoltage
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lahtinen, Riikka M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tkachenko, Nikolai V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Efimov, Alexander
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kira, Aiko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Imahori, Hiroshi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lemmetyinen, Helge
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 23(2007), 26 vom: 18. Dez., Seite 13117-25
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:26
|g day:18
|g month:12
|g pages:13117-25
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 26
|b 18
|c 12
|h 13117-25
|