Graph-based semisupervised learning

Graph-based learning provides a useful approach for modeling data in classification problems. In this modeling scenario, the relationship between labeled and unlabeled data impacts the construction and performance of classifiers, and therefore a semi-supervised learning framework is adopted. We prop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 30(2008), 1 vom: 13. Jan., Seite 174-9
1. Verfasser: Culp, Mark (VerfasserIn)
Weitere Verfasser: Michailidis, George
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural
Beschreibung
Zusammenfassung:Graph-based learning provides a useful approach for modeling data in classification problems. In this modeling scenario, the relationship between labeled and unlabeled data impacts the construction and performance of classifiers, and therefore a semi-supervised learning framework is adopted. We propose a graph classifier based on kernel smoothing. A regularization framework is also introduced, and it is shown that the proposed classifier optimizes certain loss functions. Its performance is assessed on several synthetic and real benchmark data sets with good results, especially in settings where only a small fraction of the data are labeled
Beschreibung:Date Completed 12.02.2008
Date Revised 16.11.2007
published: Print
Citation Status MEDLINE
ISSN:0162-8828