Maximum-likelihood registration of range images with missing data

Missing data are common in range images, due to geometric occlusions, limitations in the sensor field of view, poor reflectivity, depth discontinuities, and cast shadows. Using registration to align these data often fails, because points without valid correspondences can be incorrectly matched. This...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 30(2008), 1 vom: 13. Jan., Seite 120-30
Auteur principal: Sharp, Gregory C (Auteur)
Autres auteurs: Lee, Sang W, Wehe, David K
Format: Article
Langue:English
Publié: 2008
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM174992912
003 DE-627
005 20250208210000.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0583.xml 
035 |a (DE-627)NLM174992912 
035 |a (NLM)18000329 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sharp, Gregory C  |e verfasserin  |4 aut 
245 1 0 |a Maximum-likelihood registration of range images with missing data 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.02.2008 
500 |a Date Revised 16.11.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Missing data are common in range images, due to geometric occlusions, limitations in the sensor field of view, poor reflectivity, depth discontinuities, and cast shadows. Using registration to align these data often fails, because points without valid correspondences can be incorrectly matched. This paper presents a maximum likelihood method for registration of scenes with unmatched or missing data. Using ray casting, correspondences are formed between valid and missing points in each view. These correspondences are used to classify points by their visibility properties, including occlusions, field of view, and shadow regions. The likelihood of each point match is then determined using statistical properties of the sensor, such as noise and outlier distributions. Experiments demonstrate a high rates of convergence on complex scenes with varying degrees of overlap 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Lee, Sang W  |e verfasserin  |4 aut 
700 1 |a Wehe, David K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 30(2008), 1 vom: 13. Jan., Seite 120-30  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:1  |g day:13  |g month:01  |g pages:120-30 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 1  |b 13  |c 01  |h 120-30