Adhesion of nonmotile Pseudomonas aeruginosa on "soft" polyelectrolyte layer in a radial stagnation point flow system : measurements and model predictions

Prediction of bacterial deposition rates onto substrates in natural aquatic systems is quite challenging because of the inherent complexity of such systems. In this study, we compare experimental deposition kinetics of nonmotile bacteria (Pseudomonas aeruginosa) on an alginate-coated substrate in a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 24 vom: 20. Nov., Seite 12301-8
1. Verfasser: de Kerchove, Alexis J (VerfasserIn)
Weitere Verfasser: Weroński, Paweł, Elimelech, Menachem
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Alginates Electrolytes Polymers
Beschreibung
Zusammenfassung:Prediction of bacterial deposition rates onto substrates in natural aquatic systems is quite challenging because of the inherent complexity of such systems. In this study, we compare experimental deposition kinetics of nonmotile bacteria (Pseudomonas aeruginosa) on an alginate-coated substrate in a radial stagnation point flow (RSPF) system to predictions based on DLVO theory. The "softness" of the surface layer of the bacteria and alginate-coated substrate was considered in the calculations of their electrokinetic surface properties, and the relevance of both the classical zeta potential and the outer surface potential as surrogates for surface potential was investigated. Independent of the used electrical potentials, we showed that significant discrepancies exist between theory and experiments. Analysis of microscopic images in the RSPF system has demonstrated, for the first time, that irreversible deposition of particles or cells entrapped in the secondary energy minimum can occur on the alginate layer, despite the hydrodynamic forces resulting from the radial flow in the RSPF system. It is suggested that polymeric structures associated with the surface of the particle/cell and the alginate-coated substrate are responsible for the transition between the secondary minimum and primary energy well. This mode of deposition is likely to be important in the deposition of microorganisms in complex aquatic systems
Beschreibung:Date Completed 08.02.2008
Date Revised 21.11.2008
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827