Automatic age estimation based on facial aging patterns

While recognition of most facial variations, such as identity, expression and gender, has been extensively studied, automatic age estimation has rarely been explored. In contrast to other facial variations, aging variation presents several unique characteristics which make age estimation a challengi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 12 vom: 14. Dez., Seite 2234-40
1. Verfasser: Geng, Xin (VerfasserIn)
Weitere Verfasser: Zhou, Zhi-Hua, Smith-Miles, Kate
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM174367031
003 DE-627
005 20250208185349.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0581.xml 
035 |a (DE-627)NLM174367031 
035 |a (NLM)17934231 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Geng, Xin  |e verfasserin  |4 aut 
245 1 0 |a Automatic age estimation based on facial aging patterns 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 18.12.2007 
500 |a Date Revised 14.02.2008 
500 |a published: Print 
500 |a ErratumIn: IEEE Trans Pattern Anal Mach Intell. 2008 Feb;30(2):368 
500 |a Citation Status MEDLINE 
520 |a While recognition of most facial variations, such as identity, expression and gender, has been extensively studied, automatic age estimation has rarely been explored. In contrast to other facial variations, aging variation presents several unique characteristics which make age estimation a challenging task. This paper proposes an automatic age estimation method named AGES (AGing pattErn Subspace). The basic idea is to model the aging pattern, which is defined as the sequence of a particular individual' s face images sorted in time order, by constructing a representative subspace. The proper aging pattern for a previously unseen face image is determined by the projection in the subspace that can reconstruct the face image with minimum reconstruction error, while the position of the face image in that aging pattern will then indicate its age. In the experiments, AGES and its variants are compared with the limited existing age estimation methods (WAS and AAS) and some well-established classification methods (kNN, BP, C4.5, and SVM). Moreover, a comparison with human perception ability on age is conducted. It is interesting to note that the performance of AGES is not only significantly better than that of all the other algorithms, but also comparable to that of the human observers 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhou, Zhi-Hua  |e verfasserin  |4 aut 
700 1 |a Smith-Miles, Kate  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 12 vom: 14. Dez., Seite 2234-40  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:29  |g year:2007  |g number:12  |g day:14  |g month:12  |g pages:2234-40 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 12  |b 14  |c 12  |h 2234-40