Iterative extensions of the Sturm/Triggs algorithm : convergence and nonconvergence

We give the first complete theoretical convergence analysis for the iterative extensions of the Sturm/Triggs algorithm. We show that the simplest extension, SIESTA, converges to nonsense results. Another proposed extension has similar problems, and experiments with "balanced" iterations sh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 12 vom: 14. Dez., Seite 2217-33
1. Verfasser: Oliensis, John (VerfasserIn)
Weitere Verfasser: Hartley, Richard
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM174367023
003 DE-627
005 20231223135751.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0581.xml 
035 |a (DE-627)NLM174367023 
035 |a (NLM)17934230 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oliensis, John  |e verfasserin  |4 aut 
245 1 0 |a Iterative extensions of the Sturm/Triggs algorithm  |b convergence and nonconvergence 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 18.12.2007 
500 |a Date Revised 15.10.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We give the first complete theoretical convergence analysis for the iterative extensions of the Sturm/Triggs algorithm. We show that the simplest extension, SIESTA, converges to nonsense results. Another proposed extension has similar problems, and experiments with "balanced" iterations show that they can fail to converge or become unstable. We present CIESTA, an algorithm which avoids these problems. It is identical to SIESTA except for one simple extra computation. Under weak assumptions, we prove that CIESTA iteratively decreases an error and approaches fixed points. With one more assumption, we prove it converges uniquely. Our results imply that CIESTA gives a reliable way of initializing other algorithms such as bundle adjustment. A descent method such as Gauss-Newton can be used to minimize the CIESTA error, combining quadratic convergence with the advantage of minimizing in the projective depths. Experiments show that CIESTA performs better than other iterations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 12 vom: 14. Dez., Seite 2217-33  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:12  |g day:14  |g month:12  |g pages:2217-33 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 12  |b 14  |c 12  |h 2217-33