Representing images using nonorthogonal Haar-like bases

Efficient and compact representation of images is a fundamental problem in computer vision. In this paper, we propose methods that use Haar-like binary box functions to represent a single image or a set of images. A desirable property of these box functions is that their inner product operation with...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 12 vom: 14. Dez., Seite 2120-34
Auteur principal: Tang, Feng (Auteur)
Autres auteurs: Crabb, Ryan, Tao, Hai
Format: Article
Langue:English
Publié: 2007
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM174366949
003 DE-627
005 20250208185348.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0581.xml 
035 |a (DE-627)NLM174366949 
035 |a (NLM)17934222 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Feng  |e verfasserin  |4 aut 
245 1 0 |a Representing images using nonorthogonal Haar-like bases 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 18.12.2007 
500 |a Date Revised 15.10.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Efficient and compact representation of images is a fundamental problem in computer vision. In this paper, we propose methods that use Haar-like binary box functions to represent a single image or a set of images. A desirable property of these box functions is that their inner product operation with an image can be computed very efficiently. We propose two closely related novel subspace methods to model images: the non-orthogonal binary subspace (NBS) method and binary principal component analysis (B-PCA) algorithm. NBS is spanned directly by binary box functions and can be used for image representation, fast template matching and many other vision applications. B-PCA is a structure subspace that inherits the merits of both NBS (fast computation) and PCA (modeling data structure information). B-PCA base vectors are obtained by a novel PCA guided NBS method. We also show that BPCA base vectors are nearly orthogonal to each other. As a result, in the non-orthogonal vector decomposition process, the computationally intensive pseudo-inverse projection operator can be approximated by the direct dot product without causing significant distance distortion. Experiments on real image datasets show promising performance in image matching, reconstruction and recognition tasks with significant speed improvement 
650 4 |a Journal Article 
700 1 |a Crabb, Ryan  |e verfasserin  |4 aut 
700 1 |a Tao, Hai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 12 vom: 14. Dez., Seite 2120-34  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:29  |g year:2007  |g number:12  |g day:14  |g month:12  |g pages:2120-34 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 12  |b 14  |c 12  |h 2120-34