Minimum class variance support vector machines

In this paper, a modified class of support vector machines (SVMs) inspired from the optimization of Fisher's discriminant ratio is presented, the so-called minimum class variance SVMs (MCVSVMs). The MCVSVMs optimization problem is solved in cases in which the training set contains less samples...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 16(2007), 10 vom: 07. Okt., Seite 2551-64
Auteur principal: Zafeiriou, Stefanos (Auteur)
Autres auteurs: Tefas, Anastasios, Pitas, Ioannis
Format: Article
Langue:English
Publié: 2007
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM174297300
003 DE-627
005 20250208183950.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0581.xml 
035 |a (DE-627)NLM174297300 
035 |a (NLM)17926936 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
245 1 0 |a Minimum class variance support vector machines 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.11.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a modified class of support vector machines (SVMs) inspired from the optimization of Fisher's discriminant ratio is presented, the so-called minimum class variance SVMs (MCVSVMs). The MCVSVMs optimization problem is solved in cases in which the training set contains less samples that the dimensionality of the training vectors using dimensionality reduction through principal component analysis (PCA). Afterward, the MCVSVMs are extended in order to find nonlinear decision surfaces by solving the optimization problem in arbitrary Hilbert spaces defined by Mercer's kernels. In that case, it is shown that, under kernel PCA, the nonlinear optimization problem is transformed into an equivalent linear MCVSVMs problem. The effectiveness of the proposed approach is demonstrated by comparing it with the standard SVMs and other classifiers, like kernel Fisher discriminant analysis in facial image characterization problems like gender determination, eyeglass, and neutral facial expression detection 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tefas, Anastasios  |e verfasserin  |4 aut 
700 1 |a Pitas, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 16(2007), 10 vom: 07. Okt., Seite 2551-64  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:10  |g day:07  |g month:10  |g pages:2551-64 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 10  |b 07  |c 10  |h 2551-64