|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM174138261 |
003 |
DE-627 |
005 |
20231223135251.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0581.xml
|
035 |
|
|
|a (DE-627)NLM174138261
|
035 |
|
|
|a (NLM)17910362
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fan, Fengshen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 04.01.2008
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Chemical coagulation with ferric chloride, alum, and an organic polymer were used to control the fouling potential of mixed liquors for submerged membrane bioreactor (MBR) processes in treating municipal wastewater. Their filterability was evaluated using a submerged hollow fiber ultrafiltration apparatus operated in constant permeate flux mode. The collected transmembrane pressures over filtration time were used to calculate the membrane fouling rates. The results showed that coagulation pretreatment can reduce fouling rates when MBRs were operated above the critical flux. Even though coagulation with the organic polymer formed larger mixed liquor suspended solids particles and had shorter time-to-filtration than those with ferric chloride and alum, the filterability for membrane filtration were similar, indicating that the membrane fouling in MBR systems was mainly controlled by the concentration of smaller colloidal particles
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Alum Compounds
|2 NLM
|
650 |
|
7 |
|a Chlorides
|2 NLM
|
650 |
|
7 |
|a Coagulants
|2 NLM
|
650 |
|
7 |
|a Colloids
|2 NLM
|
650 |
|
7 |
|a Ferric Compounds
|2 NLM
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a aluminum sulfate
|2 NLM
|
650 |
|
7 |
|a 34S289N54E
|2 NLM
|
650 |
|
7 |
|a ferric chloride
|2 NLM
|
650 |
|
7 |
|a U38V3ZVV3V
|2 NLM
|
700 |
1 |
|
|a Zhou, Hongde
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Husain, Hadi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 79(2007), 9 vom: 15. Sept., Seite 952-7
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:79
|g year:2007
|g number:9
|g day:15
|g month:09
|g pages:952-7
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 79
|j 2007
|e 9
|b 15
|c 09
|h 952-7
|