Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts
The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is depe...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 22 vom: 23. Okt., Seite 11281-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface |
---|---|
Beschreibung: | Date Completed 20.12.2007 Date Revised 16.10.2007 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |