In planta regulation of the Arabidopsis Ca(2+)/H(+) antiporter CAX1

Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 58(2007), 12 vom: 23., Seite 3419-27
1. Verfasser: Mei, Hui (VerfasserIn)
Weitere Verfasser: Zhao, Jian, Pittman, Jon K, Lachmansingh, Jinesh, Park, Sunghun, Hirschi, Kendal D
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Antiporters Cation Transport Proteins DNA Primers Metals calcium-hydrogen antiporters
Beschreibung
Zusammenfassung:Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits
Beschreibung:Date Completed 05.02.2008
Date Revised 10.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431