Electrochemical deposition and characterization of mixed-valent rhenium oxide films prepared from a perrhenate solution
Cathodic electrodeposition of mixed-valent rhenium oxides at indium tin oxide, gold, rhenium, and glassy carbon electrodes from acidic perrhenate solutions (pH = 1.5 +/- 0.1) prepared from hydrogen peroxide and zerovalent rhenium metal is described. Cyclic voltammetry, variable angle spectroscopic e...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 21 vom: 09. Okt., Seite 10837-45 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Solutions perrhenate 14333-24-5 Rhenium 7440-15-5 |
Zusammenfassung: | Cathodic electrodeposition of mixed-valent rhenium oxides at indium tin oxide, gold, rhenium, and glassy carbon electrodes from acidic perrhenate solutions (pH = 1.5 +/- 0.1) prepared from hydrogen peroxide and zerovalent rhenium metal is described. Cyclic voltammetry, variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), UV-vis spectroelectrochemistry, and electrochemical quartz crystal microbalance (EQCM) data indicate that the chemical nature of the electrodeposited rhenium species depends mainly upon the potential and supporting electrolyte. The presence of SO4(2-) as a supporting electrolyte inhibits the adsorption of perrhenate, ReO4-, at non-hydrogen adsorbing electrode materials. However, in acidic perrhenate solutions containing only protons and ReO4- anions, strong adsorption of ReO4- at potentials preceding hydrogen evolution occurs. This leads to the formation of an unstable ReIII2O3 intermediate which catalytically disproportionates to form mixed-valent rhenium films consisting of 72% ReIVO2 and 28% Re0. During the hydrogen evolution reaction (HER), hydrogen polarization causes the principle deposit to be more reduced, consisting of roughly 64% ReIVO2 and 36% Re0. Conclusively, metallic rhenium can be deposited at potentials preceding the HER at non-hydrogen adsorbing electrode materials, especially in the absence of SO4(2-) anions |
---|---|
Beschreibung: | Date Completed 13.11.2007 Date Revised 02.10.2007 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |