Classification and recognition of dynamical models : the role of phase, independent components, kernels and optimal transport

We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 11 vom: 11. Nov., Seite 1958-72
1. Verfasser: Bissacco, Alessandro (VerfasserIn)
Weitere Verfasser: Chiuso, Alessandro, Soatto, Stefano
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM173583199
003 DE-627
005 20250208163211.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0579.xml 
035 |a (DE-627)NLM173583199 
035 |a (NLM)17848777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bissacco, Alessandro  |e verfasserin  |4 aut 
245 1 0 |a Classification and recognition of dynamical models  |b the role of phase, independent components, kernels and optimal transport 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2007 
500 |a Date Revised 12.09.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Chiuso, Alessandro  |e verfasserin  |4 aut 
700 1 |a Soatto, Stefano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 11 vom: 11. Nov., Seite 1958-72  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:11  |g day:11  |g month:11  |g pages:1958-72 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 11  |b 11  |c 11  |h 1958-72