A practical approach for writer-dependent symbol recognition using a writer-independent symbol recognizer

We present a practical technique for using a writer-independent recognition engine to improve the accuracy and speed while reducing the training requirements of a writer-dependent symbol recognizer. Our writer-dependent recognizer uses a set of binary classifiers based on the AdaBoost learning algor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 11 vom: 11. Nov., Seite 1917-26
1. Verfasser: LaViola, Joseph J Jr (VerfasserIn)
Weitere Verfasser: Zeleznik, Robert C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM173583164
003 DE-627
005 20231223134107.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0579.xml 
035 |a (DE-627)NLM173583164 
035 |a (NLM)17848774 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a LaViola, Joseph J  |c Jr  |e verfasserin  |4 aut 
245 1 2 |a A practical approach for writer-dependent symbol recognition using a writer-independent symbol recognizer 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2007 
500 |a Date Revised 01.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a practical technique for using a writer-independent recognition engine to improve the accuracy and speed while reducing the training requirements of a writer-dependent symbol recognizer. Our writer-dependent recognizer uses a set of binary classifiers based on the AdaBoost learning algorithm, one for each possible pairwise symbol comparison. Each classifier consists of a set of weak learners, one of which is based on a writer-independent handwriting recognizer. During online recognition, we also use the n-best list of the writer-independent recognizer to prune the set of possible symbols and thus reduce the number of required binary classifications. In this paper, we describe the geometric and statistical features used in our recognizer and our all-pairs classification algorithm. We also present the results of experiments that quantify the effect incorporating a writer-independent recognition engine into a writer-dependent recognizer has on accuracy, speed, and user training time 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zeleznik, Robert C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 11 vom: 11. Nov., Seite 1917-26  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:11  |g day:11  |g month:11  |g pages:1917-26 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 11  |b 11  |c 11  |h 1917-26