Restoring 2D content from distorted documents

This paper presents a framework to restore the 2D content printed on documents in the presence of geometric distortion and non-uniform illumination. Compared with textbased document imaging approaches that correct distortion to a level necessary to obtain sufficiently readable text or to facilitate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 11 vom: 11. Nov., Seite 1904-16
1. Verfasser: Brown, Michael S (VerfasserIn)
Weitere Verfasser: Sun, Mingxuan, Yang, Ruigang, Yun, Lin, Seales, W Brent
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM173583156
003 DE-627
005 20250208163210.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0579.xml 
035 |a (DE-627)NLM173583156 
035 |a (NLM)17848773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Brown, Michael S  |e verfasserin  |4 aut 
245 1 0 |a Restoring 2D content from distorted documents 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2007 
500 |a Date Revised 01.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a framework to restore the 2D content printed on documents in the presence of geometric distortion and non-uniform illumination. Compared with textbased document imaging approaches that correct distortion to a level necessary to obtain sufficiently readable text or to facilitate optical character recognition (OCR), our work targets nontextual documents where the original printed content is desired. To achieve this goal, our framework acquires a 3D scan of the document's surface together with a high-resolution image. Conformal mapping is used to rectify geometric distortion by mapping the 3D surface back to a plane while minimizing angular distortion. This conformal "deskewing" assumes no parametric model of the document's surface and is suitable for arbitrary distortions. Illumination correction is performed by using the 3D shape to distinguish content gradient edges from illumination gradient edges in the high-resolution image. Integration is performed using only the content edges to obtain a reflectance image with significantly less illumination artifacts. This approach makes no assumptions about light sources and their positions. The results from the geometric and photometric correction are combined to produce the final output 
650 4 |a Journal Article 
700 1 |a Sun, Mingxuan  |e verfasserin  |4 aut 
700 1 |a Yang, Ruigang  |e verfasserin  |4 aut 
700 1 |a Yun, Lin  |e verfasserin  |4 aut 
700 1 |a Seales, W Brent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 11 vom: 11. Nov., Seite 1904-16  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:11  |g day:11  |g month:11  |g pages:1904-16 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 11  |b 11  |c 11  |h 1904-16