Clustering and embedding using commute times

This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and embedding, and explores its applications to image segmentation and multi-body motion tracking. Our starting point is the lazy random walk on the graph, which is determined by the heatke...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 11 vom: 11. Nov., Seite 1873-90
1. Verfasser: Qiu, Huaijun John (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17358313X
003 DE-627
005 20231223134107.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0579.xml 
035 |a (DE-627)NLM17358313X 
035 |a (NLM)17848771 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiu, Huaijun John  |e verfasserin  |4 aut 
245 1 0 |a Clustering and embedding using commute times 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2007 
500 |a Date Revised 12.09.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and embedding, and explores its applications to image segmentation and multi-body motion tracking. Our starting point is the lazy random walk on the graph, which is determined by the heatkernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterize the random walk using the commute time (i.e. the expected time taken for a random walk to travel between two nodes and return) and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. Our motivation is that the commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix. In this paper, we explore two applications of the commute time. The first is to develop a method for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix. We show that our commute time segmentation method has the property of enhancing the intra-group coherence while weakening inter-group coherence and is superior to the normalized cut. The second application is to develop a robust multi-body motion tracking method using an embedding based on the commute time. Our embedding procedure preserves commute time, and is closely akin to kernel PCA, the Laplacian eigenmap and the diffusion map. We illustrate the results both on synthetic image sequences and real world video sequences, and compare our results with several alternative methods 
650 4 |a Journal Article 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 11 vom: 11. Nov., Seite 1873-90  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:11  |g day:11  |g month:11  |g pages:1873-90 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 11  |b 11  |c 11  |h 1873-90