Movie denoising by average of warped lines

Here, we present an efficient method for movie denoising that does not require any motion estimation. The method is based on the well-known fact that averaging several realizations of a random variable reduces the variance. For each pixel to be denoised, we look for close similar samples along the l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 16(2007), 9 vom: 11. Sept., Seite 2333-47
1. Verfasser: Bertalmío, Marcelo (VerfasserIn)
Weitere Verfasser: Caselles, Vicent, Pardo, Alvaro
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM172953111
003 DE-627
005 20231223132820.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0577.xml 
035 |a (DE-627)NLM172953111 
035 |a (NLM)17784606 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bertalmío, Marcelo  |e verfasserin  |4 aut 
245 1 0 |a Movie denoising by average of warped lines 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.12.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Here, we present an efficient method for movie denoising that does not require any motion estimation. The method is based on the well-known fact that averaging several realizations of a random variable reduces the variance. For each pixel to be denoised, we look for close similar samples along the level surface passing through it. With these similar samples, we estimate the denoised pixel. The method to find close similar samples is done via warping lines in spatiotemporal neighborhoods. For that end, we present an algorithm based on a method for epipolar line matching in stereo pairs which has per-line complexity O (N), where N is the number of columns in the image. In this way, when applied to the image sequence, our algorithm is computationally efficient, having a complexity of the order of the total number of pixels. Furthermore, we show that the presented method is unsupervised and is adapted to denoise image sequences with an additive white noise while respecting the visual details on the movie frames. We have also experimented with other types of noise with satisfactory results 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Caselles, Vicent  |e verfasserin  |4 aut 
700 1 |a Pardo, Alvaro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 16(2007), 9 vom: 11. Sept., Seite 2333-47  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:9  |g day:11  |g month:09  |g pages:2333-47 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 9  |b 11  |c 09  |h 2333-47