Geometric direct search algorithms for image registration

A widely used approach to image registration involves finding the general linear transformation that maximizes the mutual information between two images, with the transformation being rigid-body [i.e., belonging to SE(3)] or volume-preserving [i.e., belonging to SL(3)]. In this paper, we present coo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 16(2007), 9 vom: 11. Sept., Seite 2215-24
1. Verfasser: Lee, Seok (VerfasserIn)
Weitere Verfasser: Choi, Minseok, Kim, Hyungmin, Park, Frank Chongwoo
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM172952980
003 DE-627
005 20250208153751.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0577.xml 
035 |a (DE-627)NLM172952980 
035 |a (NLM)17784595 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Seok  |e verfasserin  |4 aut 
245 1 0 |a Geometric direct search algorithms for image registration 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.12.2007 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A widely used approach to image registration involves finding the general linear transformation that maximizes the mutual information between two images, with the transformation being rigid-body [i.e., belonging to SE(3)] or volume-preserving [i.e., belonging to SL(3)]. In this paper, we present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the groups SL(3), SE(3), and their various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometric algorithms 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Choi, Minseok  |e verfasserin  |4 aut 
700 1 |a Kim, Hyungmin  |e verfasserin  |4 aut 
700 1 |a Park, Frank Chongwoo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 16(2007), 9 vom: 11. Sept., Seite 2215-24  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:16  |g year:2007  |g number:9  |g day:11  |g month:09  |g pages:2215-24 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2007  |e 9  |b 11  |c 09  |h 2215-24