|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM172952956 |
003 |
DE-627 |
005 |
20250208153750.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0577.xml
|
035 |
|
|
|a (DE-627)NLM172952956
|
035 |
|
|
|a (NLM)17784593
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ma, Jianwei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Combined curvelet shrinkage and nonlinear anisotropic diffusion
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.12.2007
|
500 |
|
|
|a Date Revised 26.10.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this paper, a diffusion-based curvelet shrinkage is proposed for discontinuity-preserving denoising using a combination of a new tight frame of curvelets with a nonlinear diffusion scheme. In order to suppress the pseudo-Gibbs and curvelet-like artifacts, the conventional shrinkage results are further processed by a projected total variation diffusion, in which only the insignificant curvelet coefficients or high-frequency part of the signal are changed by use of a constrained projection. Numerical experiments from piecewise-smooth to textured images show good performances of the proposed method to recover the shape of edges and important detailed components, in comparison to some existing methods
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Plonka, Gerlind
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1997
|g 16(2007), 9 vom: 11. Sept., Seite 2198-206
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:16
|g year:2007
|g number:9
|g day:11
|g month:09
|g pages:2198-206
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 16
|j 2007
|e 9
|b 11
|c 09
|h 2198-206
|